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Abstract

In this paper, a new framework for the construction of accurate and efficient numerical methods for differential alge-
braic equation (DAE) initial value problems is presented. The methods are based on applying spectral deferred correction
techniques as preconditioners to a Picard integral collocation formulation for the solution. The resulting preconditioned
nonlinear system is solved using Newton–Krylov schemes such as the Newton-GMRES method. Least squares based
orthogonal polynomial approximations are computed using Gaussian type quadratures, and spectral integration is used
to avoid the numerically unstable differentiation operator. The resulting Krylov deferred correction (KDC) methods
are of arbitrary order of accuracy and very stable. Preliminary results show that these new methods are very competitive
with existing DAE solvers, particularly when high precision is desired.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper introduces a new class of methods for the numerical solution of differential algebraic equation
(DAE) systems of the form
0021-9

doi:10.

* Co
E-m

1 Th
2 Th

Office
well as
F ðyðtÞ; y0ðtÞ; tÞ ¼ 0: ð1Þ
991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

1016/j.jcp.2006.06.040

rresponding author. Fax: +1 919 962 9345.
ail addresses: huang@amath.unc.edu (J. Huang), junjia@amath.unc.edu (J. Jia), minion@amath.unc.edu (M. Minion).

e work of this author was supported in part by NSF under Grants DMS0411920 and DMS0327896.
e work of this author was supported in part under contract DE-AC03-76SF00098 by the Director, Department of Energy (DOE)
of Science; Office of Advanced Scientific Computing Research; Office of Mathematics, Information, and Computational Sciences, as

the Alexander von Humboldt Foundation.

mailto:huang@amath.unc.edu
mailto:junjia@amath.unc.edu
mailto:minion@amath.unc.edu


740 J. Huang et al. / Journal of Computational Physics 221 (2007) 739–760
DAEs arise naturally in many applications, for example, the discretization of partial differential equations
(PDEs) or model reduction and singular perturbations [8]. Compared with ordinary differential equations
(ODEs), the numerical solution of DAEs is, in general, a more challenging subject since the algebraic part
of the DAE can often be expressed as the infinite stiffness limit of a singular perturbation problem, and such
stiffness typically poses difficulty to traditional numerical ODE methods. Currently, several methods are avail-
able for solving DAEs, including the backward differentiation formulas (BDF) based package DASSL devel-
oped by Petzold et al. which is applicable to DAE problems of index 0 and 1 [8,29]; and the Runge–Kutta
based RADAU by Hairer et al. which can be applied to DAE problems of index up to 3 [18,20]. Detailed dis-
cussions of these available solvers as well as a test set can be found in [1], and the readers are referred to the
references therein.

In this paper, we discuss a new class of numerical methods for DAE initial value problems which are based
on a combination of ideas from spectral deferred correction methods for ODEs and inexact Newton methods
(Newton–Krylov methods) for solving nonlinear equations. Deferred and defect correction methods, first pro-
posed by Pereyra and Zadunaisky [26,36,37], build higher-order accurate solutions of initial value ODEs by
iteratively approximating an equation for the error or defect to increase the accuracy of a provisional solution.
Recently, Dutt et al. [13] presented a new variation on the deferred/defect correction strategy for ODEs which
is based on a Picard integral equation form of the correction equation and utilizes spectral integration on
Gaussian quadrature nodes. The resulting spectral deferred correction (SDC) schemes can, in principle,
achieve arbitrary order of accuracy for both stiff and non-stiff problems, and (unlike linear-multistep methods)
the linear stability properties of higher-order versions of the methods are similar to those of lower-order ver-
sions. Furthermore, each substep of the SDC method is computationally no more complex than that of a first-
order Euler method.

More recently, it was shown in [5,21] that the deferred correction process can be considered as an iterative
scheme with the corresponding fixed point being the solution to the collocation formulation of the ODE. In
particular, for linear problems, it was shown in [21] that SDC methods are equivalent to solving a precondi-
tioned form of the collocation equation for the error by a Neumann series expansion. Therefore, Krylov sub-
space methods such as the generalized minimum residual (GMRES) procedure can be utilized to accelerate the
convergence. For nonlinear problems, the Krylov-SDC techniques are applied in [21] to a linear implicit for-
mulation of the error equation. Stability and accuracy analyses in [21] demonstrate that the accelerated SDC
methods provide improvements in the accuracy, efficiency, and stability of the original SDC approach. Fur-
thermore, results show that the acceleration also effectively eliminates the order reduction previously observed
in SDC and other methods [9,12,24,34] for certain stiff ODE systems.

The purpose of this paper is to demonstrate that the accelerated SDC techniques originally developed for
ODEs can be generalized to construct solvers for initial value DAEs which have arbitrary order of accuracy
while maintaining at each substep the same computational complexity of a simple first-order Euler method.
Indeed SDC ideas have recently been applied to certain classes of DAEs [30–32] and PDEs [7,25]. In this paper
we present a more general approach based on a Picard integral type formulation for DAEs
F y0 þ
Z t

0

Y ðsÞ ds; Y ðtÞ; t
� �

¼ 0; ð2Þ
where Y(t) = y 0(t) is introduced as the new unknown function and y(t) is recovered using quadrature.
Although this formulation is quite general, we discuss in Section 4 how it can be modified to increase efficiency
for systems with algebraic and differential variables.

Introducing the spectral integration matrix S as in [21], the discretized collocation formulation is given by
Fðy0 þ DtS � Y;Y; tÞ ¼ 0; ð3Þ
which will be symbolically denoted as H(Y) = 0. In the formula, t = [t1, t2, . . . , tp]T represents the Gaussian
nodes, y0 = [y0,y0, . . . ,y0]T the vector of initial values, Y = [Y1,Y2, . . . ,Yp]T the desired solution to the collo-
cation formulation which approximates Y(tm) at the discretized point tm, and � is the tensor product (i.e. DtS

is applied to each component of Y). The direct solution of H(Y) = 0 when p is large is in general computation-
ally inefficient as the matrix S is dense. Instead, we assume a provisional solution ~Y ¼ ½~Y 1; ~Y 2; . . . ; ~Y p�T is gi-
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ven, and define the discretized error vector as d ¼ Y� ~Y ¼ ½d1; d2; . . . ; dp�T. A simple substitution yields an er-
ror equation for d
Fðy0 þ DtS � ~Yþ DtS � d; ~Yþ d; tÞ ¼ 0: ð4Þ

Following the strategy for SDC methods for ODEs, we show how a low-order time-stepping procedure can be
applied to Eq. (4) to yield an approximation ~d ¼ ½~d1; ~d2; . . . ; ~dp�T to the error. Similar to the ODE case in [21],
we show that this is equivalent to solving
Fðy0 þ DtS � ~Yþ Dt~S � ~d; ~Yþ ~d; tÞ ¼ 0; ð5Þ

where ~S is a low-order, lower-triangular approximation of the spectral integration matrix S. Unfortunately,
our numerical experiments demonstrate that using this ‘‘un-accelerated’’ SDC approach is not effective for
some problems.

Instead, one can consider the SDC correction step in Eq. (5) as an ‘‘implicit’’ function
~d ¼ ~Hð~YÞ; ð6Þ

where the provisional solution ~Y is the input variable and the output is ~d. Here we also show that, under
rather general assumptions, the Jacobian of ~H is closer to identity than that of H (see Eq. (25)), hence
~H ¼ 0 is better conditioned compared with H(Y) = 0. We demonstrate how available Newton–Krylov pack-
ages such as those in [23] are easily adapted and applied directly to Eq. (6) to find the zero of ~H (which also
solves H = 0). Hence the SDC procedure is analogous to a preconditioner of the collocation equation (3). This
direct procedure differs from the linear implicit formulation used for ODEs in [21].

This paper is organized as follows. In Section 2, we review for completeness several fundamental numer-
ical techniques which are combined in Section 3 to construct Krylov subspace accelerated SDC methods for
DAEs of the form (1). In Section 4, a discussion of modifying the general form of the Picard equation (2)
based on the decomposition of algebraic and differential variables is presented. Also, a convergence analysis
of the methods and additional numerical considerations based on the index of the system are included. In
Section 5, we present several preliminary numerical results to show the accuracy and efficiency of the new
solvers.
2. Fundamentals

In this section, we briefly discuss the fundamentals required to construct our new DAE solvers. Specifically,
Gaussian quadrature based orthogonal polynomial expansions, spectral integration, collocation methods for
ODE initial value problems, deferred correction formulations, and inexact Newton methods are discussed.

2.1. Orthogonal polynomials and spectral integration

It is well known that when uniform grid points are used in polynomial interpolation, the so-called ‘‘Runge’’
phenomenon can be observed [4], hence higher-order (>8) uniform grid interpolation has traditionally been
avoided. It is also known that least squares approximation using orthogonal polynomials is both numerically
stable and accurate. For a smooth function f(t) defined on [�1,1], the coefficient bk of its Legendre polynomial
expansion
f ðtÞ ¼
X1
k¼0

bkLkðtÞ
decays exponentially fast, and this fact is widely used in spectral methods [10,15]. The coefficients of the expan-
sion are determined by the integral
bk ¼ k þ 1

2

� �Z 1

�1

LkðtÞf ðtÞ dt
which can be accurately approximated using Gaussian quadrature, i.e.
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bk �
Xp

i¼1

k þ 1

2

� �
wiLkðtiÞfi;
where fi = f(ti) and {ti,wi} are the nodes and weights of the quadrature. Therefore, given any p function
values fi at the Gaussian nodes {t1,t2, . . . , tp}, a (numerically stable) linear mapping can be constructed
which maps the function values f = [f(t1), f(t2), . . . , f(tp)]T to the Legendre coefficients b = [b0,b1, . . . ,bp�1]T.
This can be represented as b ¼Lf, where L is the Legendre transform operator. The degree p � 1
polynomial
LpðtÞ ¼
Xp�1

k¼0

bkLkðtÞ
is equivalent to the Lagrange interpolation polynomial which interpolates f(ti) at the Gaussian nodes.
To accurately approximate derivatives of a function, spectral methods for differential equations rely on the

derivative of the orthogonal polynomial expansion defined as (see, pp. 60–65 in [10])
d

dt
LpðtÞ ¼

Xp�2

k¼0

ckLkðtÞ;
where
ck ¼ ð2k þ 1Þ
Xp�1

i¼kþ1
iþk odd

bi;
or more succinctly c ¼ Db where D is the spectral differentiation operator. It has been shown that D is numer-
ically ill-conditioned in the sense that the norm of the linear mapping scales like O(p2) for large p [16,35]. On
the other hand, spectral integration involves the integral of Lp(t) defined by
Z t

�1

LpðsÞ ds ¼
Xp

k¼0

akLkðtÞ;
where for k P 1
ak ¼
bk�1

2k � 1
� bkþ1

2k þ 3
; ð7Þ
or simply a ¼ Ib where I is the spectral integration operator. The norm of this linear mapping I (unlike the
spectral differentiation operator D) is bounded independent of p. Therefore, spectral integration is more stable
than spectral differentiation and is the preferred method in our following discussions.

Instead of a linear mapping I from b to a defined in Eq. (7), spectral integration may also be constructed as
a mapping from the function values f to the integrals
dk ¼
Z tk

�1

LpðsÞ ds;
or simply d ¼ Sf. The operator S is referred to as the spectral integration operator [16]. More generally,
given an arbitrary interval ½a; b� � R with b � a = Dt, a linear transformation can be applied to map [a, b]
to [�1, 1]. We also denote the corresponding Gaussian nodes in [a,b] as t = [t1, t2, . . . , tp]T, and the function
values as f = [f(t1), f(t2) ,. . . , f(tp)]T. The scaled operator S is then given by
½DtSf�k ¼
Z tk

a
LpðsÞ ds; ð8Þ
where Lp(t) is the polynomial interpolant of f and S is a matrix independent of Dt. In the following discussions,
we refer to S as the spectral integration matrix. Note that cost of the direct evaluation of DtSf is O(p2) oper-
ations which can be reduced to O(p logp) [2,14]. We are studying this technique for possible acceleration of our
current code when p is large.
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It is also possible to formulate S using Radau or Lobatto type quadrature nodes instead of Gaussian nodes
and to calculate the Legendre polynomial coefficients accordingly. The Radau Ia quadrature nodes use the left
end point (i.e. t1 = a), the Radau IIa nodes use the right end point (i.e. tp = b), and the Lobatto quadrature
nodes include both end points. Also, Chebyshev polynomials and the corresponding quadrature nodes may be
used instead of Legendre polynomial based nodes, which allows the fast Fourier transform (FFT) to be used
for acceleration. Detailed analytical and numerical comparisons of different polynomials and nodes for our
methods will be reported later. For a discussion of the choice of nodes for the original SDC methods for
ODEs, the readers are referred to [24].
2.2. Picard integral equation and collocation formulations

Consider the initial value scalar ODE
u0ðtÞ ¼ f ðt;uðtÞÞ; t 2 ½a; b�; ð9Þ
uðaÞ ¼ u0: ð10Þ
For simplicity, we assume [a,b] = [0,Dt] in the following discussions, which corresponds to one marching step
in a numerical method. The solution u(t) can also be expressed as the solution to the Picard integral formu-
lation of the ODE
uðtÞ ¼ u0 þ
Z t

0

f ðs;uðsÞÞ ds: ð11Þ
It is straightforward to apply the spectral integration operator defined above to discretize Eq. (11). Given the
quadrature nodes t 2 [0,Dt], then the discretized collocation formulation of Eq. (11) is
u ¼ u0 þ DtSfðt;uÞ: ð12Þ
where u = [u1,u2, . . . ,up]T is the desired solution at the Gaussian nodes, u0 = [u0,u0, . . . ,u0]T, and the func-
tion values are given by
fðt;uÞ ¼ ½f ðt1;u1Þ; f ðt2;u2Þ; . . . ; f ðtp;upÞ�
T
:

Eq. (12) is typically nonlinear with dimension p · p as compared to the 1 · 1 system one encounters from using
backward Euler (or BDF) methods. For N dimensional vector ODEs, the number of unknowns becomes pN

as compared to N in BDF methods. It is mainly for this reason that higher-order collocation methods are
rarely used for ODEs.
2.3. Error equations and spectral deferred corrections

In deferred and defect correction methods first introduced by Pereyra and Zadunaisky [26,36,37],
the basic strategy for computing a higher-order accurate solution is to iteratively use a lower-order method
to solve an equation for the error or defect and hence improve an approximate solution. In this section,
we follow the terminology in [13], and review how spectral deferred corrections can be applied to the
ODE initial value problem (9), (10). The details outlined in this section will be extended to DAEs in
Section 3.

As with classical deferred and defect correction methods, a single time step of an SDC method begins by
first dividing the time step [0,Dt] into a set of intermediate sub-steps defined by the points t = [t1, t2, . . . , tp]T

with 0 6 t1 < � � � < tp 6 Dt (in SDC methods, t corresponds to the quadrature nodes of Gaussian type). Next,
a provisional approximation ~u ¼ ½~u1; ~u2; . . . ; ~up�T is computed at the intermediate points using a standard
numerical method. Applying standard approximation or interpolation theory, the continuous counterpart
of ~u (for example, the Legendre polynomial expansion) is then constructed and is denoted by ~uðtÞ. Finally,
an equation for the error dðtÞ ¼ uðtÞ � ~uðtÞ is derived which is then approximated with a time marching
scheme and used to improve the original solution ~u.



744 J. Huang et al. / Journal of Computational Physics 221 (2007) 739–760
In the original deferred and defect correction methods [26,36,37], the correction equation is cast as an ODE
which explicitly includes the derivative (or higher derivatives) of ~uðtÞ. On the other hand, SDC methods utilize
the Picard integral equation (11) to construct a corresponding integral equation for d(t). Specifically,
dðtÞ ¼
Z t

0

½f ðs; ~uðsÞ þ dðsÞÞ � f ðs; ~uðsÞÞ� dsþ �ðtÞ; ð13Þ
where
�ðtÞ ¼ u0 þ
Z t

0

f ðs; ~uðsÞÞ ds� ~uðtÞ: ð14Þ
In SDC methods, after computing approximations [�1, �2, . . . , �p] using spectral integration (see Section 2.1), a
lower-order method is applied to approximate d(t) in Eq. (13). For example, the backward Euler type method
~dmþ1 ¼ ~dm þ Dtm½f ðtmþ1; ~umþ1 þ ~dmþ1Þ � f ðtmþ1; ~umþ1Þ� þ �mþ1 � �m: ð15Þ

The solution ~d ¼ ½~d1; ~d2; � � � ; ~dp�T which approximates d(t) is then added to the provisional solution ~u to form a
more accurate provisional solution. Spectral integration is then again applied using Eq. (14) to accurately
compute the new �(t), and the iteration procedure continues until the residual is smaller than a prescribed tol-
erance or a maximum prescribed number of iterations is reached. Note that the computational complexity of
solving the implicit equation (15) is the same as that of the simple first-order backward Euler method.

It is easy to see that if the SDC procedure converges to a numerical solution u, then this solution satisfies
the collocation formulation equation given in Eq. (12). Therefore, the SDC procedure can also be thought of
as an iterative method for solving Eq. (12). In [21], a Krylov subspace based procedure for accelerating the
convergence of the SDC iterations to the collocation formulation solution is presented, and the analogous pro-
cedure for DAEs is discussed in the remainder of this paper.

2.4. Newton–Krylov methods

Consider a general algebraic system M(x) = 0 with N equations and unknowns, and suppose an approxi-
mate solution x0 is known. Newton’s method can be used to iteratively compute a sequence of quadratically
convergent approximations (assuming the Jacobian matrix JM is nonsingular at the solution)
xnþ1 ¼ xn � dx;
where dx is the solution of the linear equation
J MðxnÞdx ¼ b
with b = M(xn) and JM(xn) the Jacobian matrix of M(x) at xn. When the matrix JM is dense, computing the
solution of this linear equation with Gaussian elimination requires O(N3) operations.

However, for many special matrices, the amount of work required to find the solution can be greatly
reduced. Consider the case
J MðxnÞ ¼ �I � C;
where most of the eigenvalues of C are clustered close to 0. Because of the rapid decay of most eigenmodes in
Cqb, a more efficient approach than Gaussian elimination is to iteratively search for the optimal solution in the
Krylov subspace defined by
KqðJ M ; bÞ ¼ fb;Cb;C2b; . . . ;Cqbg:

The iterations in Newton’s method and the Krylov subspace methods can then be intertwined, and the result-
ing methods are usually referred to as the Newton–Krylov methods. The readers are referred to [22,23,33] for
detailed discussions.

In general, an efficient numerical implementation of a Newton–Krylov method depends on two things:

(a) A formulation of the problem M(x) = 0 such that JM is close to the identity matrix ±I.
(b) An efficient procedure for computing the matrix vector product Cb (or equivalently JMb).
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For (a), one common technique to improve the convergence of the method is to apply a ‘‘preconditioner’’ to
the original system. Traditionally, such preconditioners are chosen as sparse matrices close to J�1

M [11]. Dense
integral operators have also been used as preconditioners (see e.g. [27]), which are efficiently applied to an arbi-
trary vector using fast convolution algorithms such as the fast multipole method [17]. One of the main themes
of this paper is that the SDC procedure (for both ODEs and DAEs), in which lower-order methods are used to
produce a higher-order solution, is equivalent to using a lower-order approximation process of a particular
equation as a preconditioner for a higher-order method. This presents a different way to understand the
deferred correction methods discussed in Section 2.3, and allows one to easily adapt existing Newton–Krylov
methods to accelerate the convergence of the method.

In regards to point (b), in this paper the operator M is the collocation formulation of the DAE discussed in
next section, and the Jacobian of this operator is not always easy to derive. As this is often the case with large
systems, a general forward difference approximation technique is adapted in most Newton–Krylov solvers
where for any vector v, JM(x)v is approximated by
DhMðx : vÞ ¼ ðMðxþ hvÞ �MðxÞÞ=h
for some properly chosen parameter h (h may be complex). This difference approximation technique as well as
the choice of h has been carefully studied previously and the readers are referred to [22] for details.
3. Krylov deferred corrections for differential algebraic equations

In this section, the various building blocks of the Krylov subspace accelerated deferred correction methods
for ODEs outlined in the previous section are adapted to construct arbitrary order and stable Krylov deferred
correction (KDC) methods for DAEs. Specifically, the Picard integral formulation and collocation discretiza-
tion, error equation and deferred correction method, and the use of Newton–Krylov acceleration are discussed
in order.
3.1. Picard equation and collocation formulation for DAEs

In the original SDC method for ODEs, the Picard integral equation (11) is used to form the similar integral
equation (13) for the correction. This formulation has the benefit that it avoids the ill-conditioned differenti-
ation operator as discussed in Section 2.1. However, it is not immediately clear how to generalize this tech-
nique to DAEs since a Picard equation form of the DAE is not readily available.

Toward this end, instead of solving for y(t) in Eq. (1) directly, our new formulation uses y 0(t) as the
unknown variable, which will be denoted by Y(t) in the following discussions. Expressing y(t) as the integral
of Y(t), the DAE system F(y(t),y 0(t), t) = 0 becomes
F y0 þ
Z t

0

Y ðsÞ ds; Y ðtÞ; t
� �

¼ 0: ð16Þ
Although this formulation is quite general, we discuss in the following section cases when this formulation
should be modified to separate differential and algebraic variables in order to increase the efficiency of the
numerical method.

As in Section 2.2, this Picard type equation can be directly discretized using the spectral integration matrix
S to yield
Fðy0 þ DtS � Y;Y; tÞ ¼ 0; ð17Þ

where Y = [Y1,Y2, . . . ,Yp]T is the desired solution which approximates Y(t) = y 0(t) at the Gaussian nodes. The
solution y = [y1,y2, . . . ,yp]T is then recovered using the spectral integration matrix
y ¼ y0 þ DtS � Y:
Eq. (17) is the analog of the collocation formulation for ODEs given in Eq. (12), and in the following discus-
sions we write Eq. (17) symbolically as H(Y) = 0.
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As for the initial values, note that when Gaussian or Radau IIa nodes are used, only y(0) = y0 is required in
the collocation formulation. However, when Radau Ia or Lobatto nodes are applied, Y(0) is also required
when calculating DtS � Y, which can be derived by solving the equation F(y(0),Y(0),0) = 0.
3.2. Error equations and modified spectral deferred corrections

Following the procedure for SDC method for ODEs, given an approximation or provisional solution to the
DAE ~Y ¼ ½~Y 1; ~Y 2; � � � ; ~Y p�T at the nodes t, one can define an equation for the error dðtÞ ¼ Y ðtÞ � ~Y ðtÞ by
F y0 þ
Z t

0

~Y ðsÞ þ dðsÞ
� �

ds; ~Y ðtÞ þ dðtÞ; t
� �

¼ 0; ð18Þ
where ~Y ðtÞ is the polynomial interpolation of ~Y.
As in the original SDC, we wish to use a low-order method to approximate the error equation (18) and

improve the provisional solution ~Y ðtÞ. Note that Eq. (18) gives the identity
F y0 þ
Z tmþ1

0

~Y ðsÞ dsþ
Z tm

0

þ
Z tmþ1

tm

� �
dðsÞ ds; ~Y ðtmþ1Þ þ dðtmþ1Þ; tmþ1

� �
¼ 0: ð19Þ
A simple time-marching discretization of this equation similar to the explicit (forward) Euler method for
ODEs gives a low-order solution ~d ¼ ½~d1; ~d2; . . . ; ~dp�T by solving
F y0 þ ½DtS � ~Y�mþ1 þ
Xmþ1

l¼1

Dtl
~dl�1; ~Y mþ1 þ ~dmþ1; tmþ1

 !
¼ 0; ð20Þ
where Dtl+1 = tl+1 � tl, t0 and d0 are set to 0. Note that this update formula is in general implicit since no
explicit formula for ~dmþ1 exists. Similarly, a time-marching scheme based on backward Euler method
analogous to Eq. (15) is given by
F y0 þ ½DtS � ~Y�mþ1 þ
Xmþ1

l¼1

Dtl
~dl; ~Y mþ1 þ ~dmþ1; tmþ1

 !
¼ 0: ð21Þ
These two methods differ only in the way how the time integral of d(t) is approximated. Eq. (20) is equivalent
to the rectangle rule using the left endpoint while Eq. (21) is the rectangle rule using the right endpoint.
A discussion of the advantages of one over the other is presented in the next section.

The two time-stepping methods can be written in matrix form as
Fðy0 þ DtS � ~Yþ Dt~S � ~d; ~Yþ ~d; tÞ ¼ 0; ð22Þ

where Dt~S is the lower triangular representation of the rectangle rule approximation of the spectral integration
operator S. Specifically, for Eq. (20)
Dt~S ¼

0 0 � � � 0 0

Dt1 0 � � � 0 0

Dt1 Dt2 � � � 0 0

� � � � � 0 0

Dt1 Dt2 � � � Dtp�1 0

2
6666664

3
7777775

ð23Þ
and for Eq. (21)
Dt~S ¼

Dt1 0 � � � 0 0

Dt1 Dt2 � � � 0 0

� � � � � 0 0

Dt1 Dt2 � � � Dtp�2 0

Dt1 Dt2 � � � Dtp�2 Dtp�1

2
6666664

3
7777775
: ð24Þ
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As in the ODE case, the order of accuracy of ~Y is increased by iteratively using Eq. (22) to approximate the
error, and if ~Y converges, it converges to the solution of the collocation equation (17). Therefore, the accuracy
of the current methods can be broken down into two separate convergence issues: the convergence of the de-
ferred correction iterations to the collocation solution (as ~d! 0), and the convergence of the solution of the
collocation equation to the exact solution (i.e. as Dt! 0 or p!1). The focus of this paper concerns the
acceleration of the first iteration, and we assume the problem is resolved to desired error tolerance by the col-
location formulation. Readers are referred to Section 4.1 for further order and accuracy discussions of the col-
location methods.
3.3. Acceleration using Newton–Krylov methods

In [21], it is observed that the original SDC method for ODE initial value problems can be consid-
ered as a Neumann series expansion for solving the preconditioned system (12), where the preconditioner
is the spectral deferred correction process. Also in that paper, a linear implicit method is applied to gen-
eral nonlinear ODE problems. In this section, we generalize this idea to DAEs, and explain how New-
ton–Krylov methods can be directly applied to the preconditioned system instead of using the linear
implicit formulation.

From the discussion in previous section, a low-order method can be considered as a tool for deriving the
approximate error ~d as a function of the given provisional solution ~Y from the ‘‘implicit’’ function in (22). In
the following, we use
~d ¼ ~Hð~YÞ

to represent the explicit form of this implicit function. As a reminder, evaluation of ~H is nothing more than
one iteration of the deferred correction procedure. Notice that when ~d ¼ 0, the solution to Eq. (22) is identical
to Eq. (17). Therefore, solving the collocation formulation H(Y) = 0 is equivalent to finding the zero of the
implicit equation
~HðYÞ ¼ 0:
Because the low-order method solves an approximation of the collocation formulation, it is not surprising that
the explicit function ~HðYÞ ¼ 0 is better conditioned compared with the original collocation formulation in (17)
as shown by the following analysis. Applying the implicit function theorem, the Jacobian matrix J ~H of ~H is
given by
J ~H ¼
o~d

oY
¼ � oF

oY
þ oF

oy
Dt~S

� ��1
oF

oY
þ oF

oy
DtS

� �
¼ �I þ oF

oY
þ oF

oy
Dt~S

� ��1
oF

oy
Dtð~S � SÞ

� �
: ð25Þ
When oF
oY

is non-singular (e.g. oF
oY
¼ I for ODE systems), since ~S is an approximation of S, when Dt is small, J ~H is

close to �I. This was the first requirement for the efficient application of Newton–Krylov methods discussed in
Section 2.4. For comparison, the Jacobian matrix of H = 0 is given by
J H ¼
oH

oY
¼ oF

oY
þ oF

oy
DtS

� �
:

For higher-index DAE problems in which oF
oY

is singular, the KDC techniques can be applied to some of the
unknowns as will be discussed in next section. Using the implicit function theorem, it can be shown for this
case as well that the resulting Jacobian matrix is again closer to the identity matrix compared with JH. Also,
when any eigenvalue k of the matrix
C ¼ J ~H þ I ¼ oF

oY
þ oF

oy
Dt~S

� ��1
oF

oy
Dtð~S � SÞ

� �
ð26Þ
satisfies iki P 1 (this may happen to higher-index DAE systems independent of the choice of Dt), the un-accel-
erated SDC methods (consider the Neumann series for linear problems) become divergent, on the other hand,
the Newton–Krylov methods converge efficiently as long as the number of such eigenvalues is small.
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Finally, we recall that the second requirement for the efficient application of Newton–Krylov methods dis-
cussed in Section 2.4 is an efficient procedure for computing the function ~H. As noted earlier, this is simply a
deferred correction iteration described succinctly in Eq. (22).

4. Convergence, index, and implementations

Unlike the construction of numerical techniques for ODE initial value problems, which is considered a
mature subject in many respects, the efficient and accurate solutions of DAE systems are more challenging
in both theory and implementation, especially for higher-index systems. The purpose of this section is to pres-
ent preliminary results on the analytical and numerical properties of the KDC methods, including the conver-
gence analysis and essential techniques describing how a DAE system, depending on its index, can be
discretized so that the new KDC methods are efficient and accurate.

4.1. Convergence analysis

There are in fact two distinct notions of convergence which pertain to KDC methods. The first is the con-
vergence of the Krylov accelerated deferred correction steps to the solution of the collocation equation (17).
The second is the convergence of the solution of the collocation discretization (17) to the solution of the DAE
given by the Picard equation (16). This latter convergence is usually thought of as occurring as the time-step
(i.e. the integration interval in the Picard equation) goes to zero. It is important to point out that the first type
of convergence mainly affects the efficiency but not the accuracy of the scheme, as long as the iterations even-
tually converge.

Both the convergence of Newton–Krylov methods and the convergence of collocation schemes for DAEs
have been extensively studied previously, and we summarize several results from existing literature in the fol-
lowing. These results, when coupled together, show the local convergence of the KDC methods.

Convergence of Newton–Krylov methods. It is well known that under rather standard assumptions, the ori-
ginal Newton’s method converges quadratically when the initial guess is ‘‘close’’ to the real solution. However,
for Newton–Krylov methods (inexact Newton methods), each linear correction equation is only solved
approximately, and the local convergence order is no longer quadratic (but still convergent). It can be shown
that super-linear local convergence can be obtained for specially chosen parameters in the Newton–Krylov
schemes (see Theorem 6.1.2 in [23]). For arbitrary initial approximations, continuation/homotopy methods
are necessary to accomplish global convergence. Interested readers are referred to [22,23] for further
discussions.

It is important to note that the efficiency of Newton–Krylov methods in general and KDC methods in par-
ticular can be significantly affected by the form of the preconditioner. In the present context, the splitting of
algebraic and differential variables in Section 4.2 and the use of semi-implicit schemes as discussed in Section
4.4 can have a large impact on the convergence of the Krylov deferred correction iterations. In general, the
effective choice of preconditioner requires deep insight into the structure of the DAE system and is hence prob-
lem dependent. Interested readers are referred to [6] and the references therein for a discussion of general pre-
conditioning techniques.

Convergence and orders of collocation formulations. In [18,19], it was shown that collocation formulations
are equivalent to certain Runge–Kutta methods (see p. 27 in [19]), and the convergence and order of accuracy
are determined by the collocation points and properties of the DAE problem to be solved, in particular the
index (see p. 18 in [18]). As a general guidance, the collocation formulation for ODE systems (index 0
DAE systems) using p Gaussian points is order 2p, A-stable and L-stable, symplectic and symmetric, and
hence the ‘‘optimal’’ choice. For higher-index DAE systems, order reduction can be observed, the extent of
which depends on the index and the type of nodes. Radau IIa nodes are in general the best choice (and are
used here) in that the reduced order is higher than other choices. In particular, for Radau IIa nodes, one
should expect for index one problems order 2p � 1 for both differential and algebraic variables , but for index
2 problems, order 2p � 1 for differential variables and order p for algebraic variables. Interested readers are
referred to [18] for further details on the convergence (as well as divergence) of collocation formulations
for different DAE problems including partial results for index 3.
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4.2. Differential and algebraic variables

One implicit assumption of this paper is that the error equation (20) or (21) for ~d is more efficient to
solve compared with a direct solution of the collocation formulation (17) or the original DAE system (1).
Although this assumption is generally true, due to the existence of algebraic equations, it may not be the
case for at least some of the unknowns in DAE systems. Therefore, in many instances one can treat alge-
braic variables (whose derivative never appears) and differential ones differently in the discretization and
yield a more efficient overall method. An immediate consequence of such modification is that the number
of variables in the KDC system is reduced. Our preliminary numerical experiments show that this leads to
a more efficient method compared with the general formulation introduced in Section 3 where KDC strat-
egies are applied to both variables, however the accuracy of the solutions are similar for all problems we
tested. Rigorous analyses for both formulations as well as implementation details are currently being pur-
sued. In the following, we present some examples illustrating the issues regarding the modified
formulations.

Purely algebraic equation systems. For the purpose of intuitive insight, consider first the purely algebraic
system
F ðy; tÞ ¼ 0:
As the derivative never appears in this system (hence y is referred to as an algebraic variable), introducing the
error equation and spectral integration can neither improve the efficiency nor accuracy. In fact, as spectral
integration couples solutions at different node points, simply using Newton’s method for the algebraic system
at required nodes will in this case be more efficient than using the KDC approach.

Index 1 problems. Next consider the index 1 DAE problem
y 0 ¼ f ðy; zÞ;
0 ¼ gðy; zÞ;

�

where f and g are sufficiently differentiable and the inverse of og
oz is bounded. In this case, as the derivative of z

never appears in the system (hence z is called the algebraic variable), it is more efficient to apply spectral inte-
gration only to the differential variable y by making {Y,z} the unknowns. The corresponding discretized col-
location formulation becomes
Y ¼ fðy0 þ DtS � Y; zÞ;
0 ¼ gðy0 þ DtS � Y; zÞ;

�

and the error equation is given by
~Yþ ~d ¼ fðy0 þ DtS � ~Yþ Dt~S � ~d; zÞ;
0 ¼ gðy0 þ DtS � ~Yþ Dt~S � ~d; zÞ:

(

The Newton–Krylov procedure is then only applied to ~d corresponding to the Y-component, and the precon-
ditioned system is denoted by ~d ¼ ~Hð~YÞ. An immediate advantage of this modified formulation is that the
number of unknowns is reduced in ~Hð~YÞ ¼ 0 which reduces the cost of the Newton–Krylov solver.

Higher-index problems. For higher-index problems, we recommend that the differential variables and the
algebraic ones be treated differently. As a general rule, the spectral integration technique and the Krylov sub-
space methods should only be applied to the differential variables. Finding the optimal discretization for a
given DAE may require careful analysis of the structure of the DAE system, and hence is problem dependent.
The use of KDC methods is not a substitute for such analysis, nevertheless, our experience is that the KDC
methods do converge (although perhaps slowly) for a wide class of DAEs.
4.3. Scaled Newton’s method and the index

When KDC methods are applied to DAE systems, each marching step (from Gaussian node tm to tm+1) in
one SDC sweep requires the solution of a (generally) nonlinear system. When Newton’s method is used, unlike
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the ODE case, further numerical issues arise for higher-index DAE systems, including finding the correct scal-
ing when the Jacobian matrix is poorly scaled, e.g.
J ¼
Oð1Þ Oð1Þ
OðhÞ OðhÞ

� �
:

Also, multiple iteration control strategies for different variables of the solution may be required since the error
and convergence behavior for different variables may vary widely. These techniques are generally problem (in-
dex) dependent, and our experience has shown that these techniques are necessary to achieve rapid converge of
the KDC iterations as well. As these techniques are already well-documented in the context of the BDF and
Runge–Kutta based methods (see, e.g. Section 7 in [18] and Section 5.2 in [8]), we neglect the details in this
paper.

4.4. Semi-implicit KDC schemes as preconditioners

Comparing Eqs. (20) and (21), one may wonder if and when the explicit Euler method is useful since both
forms require the solution of a nonlinear system for the unknowns. There are many cases that applying an
explicit scheme to some of the equations in the DAE system may improve the efficiency of the numerical
method. One such case is the well-known non-stiff ODE systems. A more relevant example is the index 1
DAE system discussed in Section 4.2. When an explicit method can be applied to the first equation, z then
becomes the only unknown at next time step, and hence Newton’s method becomes more efficient. It is also
possible to use a ‘‘semi-implicit’’ discretization analogous to the ODE case [28] where some terms in the DAE
system are treated with using Eq. (20) and some with (21). In the KDC methods framework, these techniques
can be considered as different preconditioning strategies, and hence may improve the efficiency of the method
with no loss in accuracy. We are currently investigating these strategies in the broader context of partial dif-
ferential algebraic systems.
5. Preliminary numerical results

In this section, we show some preliminary numerical results for linear and nonlinear DAE problems with
different index. The new methods are currently implemented in matlab, and Radau IIa nodes are used in spec-
tral integration. Whenever possible, the Picard integral discretization is applied only to differential variables as
discussed in Section 4.2.

5.1. Linear DAE system

For the first example, we consider a simple linear DAE system of index 2 (see p. 267 in [3] where a is set to
10)
y01ðtÞ
y02ðtÞ

0

0
B@

1
CA ¼

10� 1
2�t 0 10ð2� tÞ

9
2�t �1 9

t þ 2 t2 � 4 0

0
B@

1
CA

y1ðtÞ
y2ðtÞ
y3ðtÞ

0
B@

1
CAþ

3�t
2�t et

2et

etð2� t � t2Þ

0
B@

1
CA ð27Þ
whose analytical solution is given by y(t) = (et,et,�et/(2 � t)).
We first demonstrate the order of accuracy of the KDC methods by computing the solution from t0 = 0 to

tfinal = 1 using Radau IIa points with p = 3, 4, and 5. The full GMRES orthogonalization procedure is applied
to the resulting preconditioned linear collocation formulations. The convergence of the error at t = 1 versus the
time step for the KDC methods is shown in Fig. 1 for y1(t) (left) and y3(t) (right), respectively. The data in Fig. 1
confirm that the KDC method using p Radau IIa nodes is converging with approximate order 2p � 1 for the
differential variables (y1 and y2), but only order p for the algebraic variable y3 (see discussion in Section 4.1).

As a comparison with BDF based methods of orders 2, 3, and 4 (see [3], p. 268, Fig. 10.2) where a step-size
smaller than 10�3 is required for 10 digits of accuracy in y1, the new KDC methods using p = 5 only requires a
step-size of approximately 10�0.9 for 14 digits accuracy, with 440 function evaluations.
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When the GMRES method is applied to the N · N linear system Ax = b, the memory required increases
linearly with the iteration number k, and the number of multiplications scales like 1

2
k2N . Hence, for large k,

the GMRES procedure becomes very expensive and requires excessive memory storage. For these reasons,
instead of a full orthogonalization procedure, GMRES can be restarted every k0 steps where k0 < N is some
fixed integer parameter. The restarted version is denoted here as GMRES(k0). We next study the effect of using
GMRES(k0) on the efficiency of KDC methods.

For the linear system above, we use 16 Radau IIa nodes and set Dt = tfinal = 1. The total number of
unknowns is N = 16 · 3, and hence k0 = 48 is equivalent to the full GMRES procedure. In Fig. 2, we study
the convergence of the KDC method using different k0 applied to the preconditioned collocation formulation
of Eq. (27). Numerical results show that keeping more data in storage (larger k0) gives better convergence
results. However, k0 = 20 results in similar convergence to k0 = 48. In the figure, we plot how the residual
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decays, as the true error is not readily available from the GMRES subroutine. For this problem, 16 points
resolve the solution to 14 significant digits so up to a constant factor, the residual is almost identical to the
true error. Also, because Eq. (27) is linear, each GMRES iteration (SDC sweep) needs exactly p = 16 function
evaluations. This explains why the two plots are identical (except for a factor 16 in x-axis).

Finally for this example, note that the KDC method using 9 Radau IIa nodes allows a step-size of 1 (one
time step from 0 to 1) for 12 digits of accuracy in y1 and y2, with a total number of 162 function evaluations
(compared to more than 1000 for the BDF methods in [3]).
5.2. Transistor amplifier problem

In our second example, we consider the transistor amplifier problem in [1] which is a stiff DAE system of
index 1 consisting of eight equations given by
M
dy
dt
¼ f ðyÞ; yð0Þ ¼ y0; y0ð0Þ ¼ y 00;
with y 2 R8 and 0 6 t 6 0.2. The matrix M is of rank 5 and is given by
M ¼

�C1 C1 0 0 0 0 0 0

C1 �C1 0 0 0 0 0 0

0 0 �C2 0 0 0 0 0

0 0 0 �C3 C3 0 0 0

0 0 0 C3 �C3 0 0 0

0 0 0 0 0 �C4 0 0

0 0 0 0 0 0 �C5 C5

0 0 0 0 0 0 C5 �C5

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

The function f is defined as
f ðyÞ ¼

� UeðtÞ
R0
þ y1

R0

� Ub
R2
þ y2ð 1

R1
þ 1

R2
Þ � ða� 1Þgðy2 � y3Þ

�gðy2 � y3Þ þ y3

R3

� Ub
R4
þ y4

R4
þ agðy2 � y3Þ

� Ub
R6
þ y5ð 1

R5
þ 1

R6
Þ � ða� 1Þgðy5 � y6Þ

�gðy5 � y6Þ þ
y6

R7

� Ub
R8
þ y7

R8
þ agðy5 � y6Þ

y8

R9

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

;

where g and Ue are auxiliary functions given by
gðxÞ ¼ bðe
x

UF � 1Þ and UeðtÞ ¼ 0:1 sinð200ptÞ:

As in Fig. 2 for the linear case, we first consider the effect of using different GMRES(k0). For this nonlinear
system, we use the Newton-GMRES method in which GMRES(k0) is applied in each Newton iteration to re-
duce the residual by a factor of g (see Section 2.4). In the experiment, 16 Radau IIa nodes are used, the step-
size is 0.0025 which resolves the solution to eight digits of accuracy, and g is set to 0.3. In (a) of Fig. 3, the
residual after each GMRES step (one SDC sweep) is presented for different choices of k0 and in (b) the resid-
ual versus number of function evaluations. It can be seen that k0 = 10 provides results similar to the full
GMRES procedure which requires k0 = 128. This is similar to the linear case shown in Fig. 2.

For general DAE problems, it is not known how to choose the ‘‘optimal’’ k0 since the choice depends on the
number of Gaussian type nodes and the eigenvalue distribution of the underlying problem. For the remainder
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of this paper, we use a simple scheme which selects k0 to be the smaller of {c1,p + N + c2} where p is the num-
ber of node points, N is the number of equations, c1 is a large constant determined by the computer memory
constraints and efficiency considerations, and c2 is a small constant currently chosen as 5. However, this strat-
egy is by no means optimal and better schemes are still being pursued (see the discussion below).

We next provide a comparison of the performance of KDC methods with the MEBDFI and RADAU
packages (see [1] for discussions of the two methods). For this problem, adaptive step-size and scheme order
selections are essential for optimal efficiency as demonstrated in Fig. 4, where for 11 digits of accuracy, the
step-sizes used by MEBDFI vary from 10�4 to 10�14 and those by RADAU from 10�3 to 10�10. Nevertheless,
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Fig. 4. Adaptive step-sizes of MEBDFI and RADAU for transistor problem (10 digits of accuracy).
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we compare the performance of the adaptive MEBDFI and RADAU packages with KDC methods using uni-
form time steps. We solve the transistor problem from t = 0.1 to t = 0.2 to avoid the initial sharp step-size
transition region. Fig. 5 shows a comparison of the RADAU and MEBDFI packages with KDC methods
with p = 5, 10, and 20 and a range of fixed time steps.

To give an indication of the disadvantage of using a fixed time step for this example, for the numerical solu-
tion using 20 Radau IIa nodes and 200 uniform steps, we compute at each step the Legendre polynomial
approximation to the solution (see Section 2.1). We set the error tolerance to 10�14 in the Newton–Krylov
iterations and hence the solution error mainly comes from the discretization in the collocation formulation
(17). In the left panel of Fig. 6, we plot the magnitude of the coefficient c10 for each step and in right panel
c19. It can be seen that for most steps, 11 terms in the expansion resolves the solution to 12 digits, however
20 Radau IIa points must be used to resolve the solution to 12 digits in all steps. This indicates that adaptive
selection of the number of nodes (or alternatively the size of the time step) would significantly increase the
efficiency of the KDC methods for this example.

We are currently studying the issue of adaptively choosing the step-size and scheme order for KDC meth-
ods. This effort must also consider other parameters related to the Newton–Krylov methods (e.g. k0 and g
above). Further possibilities include increasing the number of node points (reflecting the degree of the approx-
imating polynomial) during the Newton–Krylov procedure, and even using different numbers of nodes for dif-
ferent variables of the solution vector.

5.3. Andrews’ squeezing mechanism

Andrews’ squeezing mechanism describes the motion of 7 rigid bodies connected by joints without friction,
which is modeled by a non-stiff second order DAE system of index 3, consisting of 21 differential and 6 alge-
braic equations, as given by
K
dy
dt
¼ UðyÞ; yð0Þ ¼ y0; y 0ð0Þ ¼ y 00;
where
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The indices of the unknowns q, _q, €q and k in y are 1, 2, 3, and 3, respectively. We refer interested readers to [1]
for explicit forms of functions mentioned above.

As explained in [21], when the original SDC methods are applied to ODE problems, for sufficiently small
time step-size Dt, each correction procedure can reduce the residual by a factor of Dt unless machine precision
is reached. However, for most DAE systems we tested, especially for higher-index DAE problems, our numer-
ical experiments show that the residual from un-accelerated SDC methods may no longer converge to zero. In
Fig. 7, for Andrews’ squeezing problem, we use 10 Radau IIa nodes and plot how the residual changes after
each deferred correction step. Different step-sizes (Dt = 10�3, 10�4, 10�5, and 10�6) are tested, and it can be
seen that the residual starts increasing after a few iterations regardless how small the step-size is. In Fig. 8, as a
comparison, we show the residual after each accelerated Krylov deferred correction, in which the Krylov sub-
space methods are only applied to the differential variables. We notice that for all step-sizes, the residual
quickly converges to machine precision.

The convergence of the KDC methods and the divergence of the un-accelerated SDC techniques can be
explained by studying Eq. (26). In [21], it is shown that the SDC methods for ODEs are equivalent to a Neu-
mann series expansion for the preconditioned system. For ODE problems, as oF

oY
¼ I , the matrix C in Eq. (26) is

of order O(Dt) as long as Dt is sufficiently small. In this case, the residual always converges to zero, and each
spectral deferred correction increases the residual order by Dt. For DAE problems, due to the existence of
algebraic equations, oF

oY
may be singular, or some eigenvalues in C may be greater than 1 in magnitude, which

explains the increasing residual for the un-accelerated SDC methods. When Krylov subspace methods are
applied, however, the iteration is still convergent despite the existence of such eigenvalues. Therefore, consid-
ering the deferred/defect correction procedures as preconditioners for the collocation formulation and intro-
ducing the Newton–Krylov techniques analytically guarantees the local convergence and significantly
improves the convergence rate for DAE problems.

Finally for this problem, we want to mention that in the KDC methods, the residuals may increase during
iterations as shown in Fig. 8. We believe this is due to the inaccuracy in the forward difference approximation
used to compute the multiplication of the Jacobian times a vector in the Newton–Krylov methods and the
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nonlinearity of the system. Currently, we are adapting the Newton–Krylov methods to improve the accuracy
of the forward difference approximations. An immediate advantage is that (almost) decreasing residuals will
provide better error control strategies.

5.4. Wheelset problem

In our last example, we consider the wheelset problem described by a DAE system of dimension 17 (also
referred to as an implicit differential equation (IDE) system)
dp
dt
¼ v; ð28Þ

MðpÞ
dv
dt
db
dt

 !
¼ f ðuÞ � ðog1ðp; qÞ=opÞTCk

dðuÞ

 !
; ð29Þ

0 ¼ g1ðp; qÞ; ð30Þ
0 ¼ g2ðp; qÞ; ð31Þ
where u ¼ ðp; v; b; q; kÞT 2 R17, p; v 2 R5, b 2 R, q 2 R4, k 2 R2 and C is a scalar constant. Furthermore,
M : R5 ! R6 	 R6, f : R17 ! R5, d : R17 ! R, g1 : R9 ! R2 and g2 : R9 ! R4. This problem shows some typ-
ical properties of simulation problems in contact mechanics, i.e., friction, contact conditions, stiffness, etc. It is
an index 3 IDE system but can be reduced to index 2. Interested readers are referred to [1] for the initial con-
ditions, the function forms of M, f, d, g1 and g2, as well as more detailed discussions of the problem. In the
following, similar to [1], we present test results based on the index-2 formulation where Eq. (30) is replaced by
0 ¼ ðog1ðp; qÞ=opÞv:

We then apply the Picard discretization and Krylov acceleration only to the differential variables p, v, b.

For this test, we march with uniform time-step from t0 = 0 to tfinal = 0.002 (a region in which relative uni-
form step-sizes are used by the compared methods). A comparison of the performance of KDC methods using
4 and 8 nodes and various fixed time steps with the DASSL, MEBDFI and PSIDE codes is shown in Fig. 9.
Our numerical experiments show that the MEBDFI method requires 159 function evaluations for 5 digits of
accuracy and 581 for 12 digits. On the other hand, the new KDC method with 4 Radau IIa nodes requires 40
function evaluations for 5 digits and 348 for 12 digits. The KDC method with 8 nodes uses 152 function eval-
uations for 12 digits. A more informative comparison (i.e. a longer integration interval and comparison of
cpu-times) will be reported when an adaptive time-step KDC method has been implemented.

Finally, because of the excessive storage requirements of GMRES(k0), we present here a comparison of
alternative Krylov subspace methods applied to the wheelset problem. Specifically, we consider the biconju-
gate gradients stabilized (BiCGStab) method and transpose-free quasi-minimal residual (TFQMR) algorithm
(see [6] for a summary of existing Newton–Krylov methods). The storage required in both methods is inde-
pendent of iteration number k, and the number of multiplications grows only linearly as a function of k.
In Fig. 10, for the wheelset problem, we compare the convergence of the full GMRES procedure with BiCG-
Stab and TFQMR in terms of (a) number of iterations and (b) number of function evaluations. In the simu-
lation, we use p = 4 Radau IIa nodes and set Dt = tfinal. It can be seen that both BiCGStab and TFQMR
converge to the prescribed accuracy after numbers of iterations fewer than full GMRES, with similar numbers
of function evaluations. Similar numerical results for p = 8 are shown in Fig. 11. Comparisons of different
Krylov subspace methods as well as the optimal choices of different parameters (step-size, k0, g, etc.) are being
studied.

6. Conclusion and generalization

In this paper, spectral deferred correction methods are introduced as preconditioners for the collocation
formulations of general differential algebraic systems, and Newton–Krylov methods are applied to the result-
ing nonlinear equations. The resulting KDC methods can in principle be of arbitrarily high order of accuracy
while maintaining the computational complexity during the time-marching of simple first-order methods. Pre-
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liminary numerical results show that KDC methods can achieve similar accuracy to existing DAE methods
while using a much larger time step. However, in order to fully explore the efficiency of KDC methods, a direct
comparison of execution time with existing methods needs to be completed. This requires optimized strategies
for the selection of adaptive step-size, order of the method, proper Newton–Krylov methods, simplified New-
ton’s method, as well as several different parameters. These issues are currently being studied by the authors.

The key idea of the new technique is that ‘‘lower-order methods’’, if less costly to solve, provide good pre-
conditioners for higher-order methods. This idea can be generalized to other problems including ODE bound-
ary value problems, PDE problems, as well as multi-scale problems which can be reformulated as DAE
systems.
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